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ABSTRACT

By segmenting the body into 14 idealized masses, a mathematical
model is developed to approximate the mass distribution, center of mass,
moments of inertia, and degrees of freedom of a human being. An analysis.
of the model reveals that the segment moments of inertia about the mass
centers of the hands, feet, and forearms are negligible when compared
to the total body moments of inertia, although the torso moment of inertia
is not negligible. Some selected problems in thrust misalignment, free-
body dynamics, stability of rotation, and torque application are solved
analytically to predict man's dynamic response characteristics in space.
Preliminary experiments indicate that the torque which weightless man
can exert by applying a sudden twist to a fixed handle varies as a half-
sine wave, and is approximately 67% of his maximum torque under
normal gravity conditions.
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SOME DYNAMIC RESPONSE CHARACTERISTICS

OF WEIGHTLESS MAN

INTRODUCTION

The purpose of this study is to deve10p a mathematical model to represent the human body,
and to use this model to predict man's mechanical behavior in some selected conditions associated
with weightlessness. The problems of dynamics facing the welghtless man are many and varied.
As Simons and Kama (ref. 19) stated: "Free-floating man is indeed an intimate man-machine unit,
a single vehicle-driver component capable of fantastic motion behavior. "

As space operations are extended, man will be required to perform supply, assembly,
maintenance, and rescue missions while weightless. Man in space, floating free from his space
vehicle, will experience degrees of freedom never encountered on earth. While 'situated in a
state of imponderability" (as Petrov has described weightlessness, ref. 15), any force applied to
or by man will result in translational and/or angular accelerations. For instance, the force of an
ordinary sneeze is sufficient to tumble the average unrestrained individual at a rate of one-fifth of
a revolution per minute (ref. 21).

If the free-floating space worker is to move from one point to another and be able to work
when he gets there, he must be provided with a personal propulsion and stabilization device (refs.
9, 17, and 18). Before such a system can be developed, however, certain design parameters
must be established. These parameters are dependent upon the biomechanical properties of the
human body. To bridge the gap between anthropometric data and the dynamic response character-
istics needed for engineering design, a mathematical model is constructed. ''Dynamic response
characteristics" is used here to describe those mechanical effects which result when the human
body is subjected to unbalanced forces.

Many of the biomechanical properties of the body change when its shape changes. For
instance, when man moves his arms or legs, his center of mass and moments of inertia change.
Since the human body is complex and flexible, any convenient analytical representation is only an
approximation. As two bio-engineers (ref. 3) have so aptly put it, man is a "non-symmetrical,
fluid-filled sack of variable shape containing a large air bubble."
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Scope

This study is concerned with only those major dynamic effects which result when the human
body is subjected to unbalanced forces, and not the resulting physiological and psychological
effects.

A gengral survey is made of some selected free-body dynamics problems in which the
kinematics of the body are simple, and where elasticity and damping of the body structure are
neglected.

The experimental efforts are preliminary and may serve as guidelines for future study.

Development

The problem of describing or predicting the dynamic response characteristics of weightless
man is approached in three phases:

a. Description and analysis of a mathematical model
b. Analytical prediction of some selected dynamic response characteristics
c. Comparison of some analytical results with experimental data

The first phase of this study is devoted to the development of a mathematical model which
incorporates the biomechanical and anthropometric properties of man. Using a model based on
50th percentile data of the 1950 USAF population (ref. 12), an analysis is made to determine the
contribution of each of the various body moments of inertia. This model will herein be called the
USAF Mean Man. Based on this analysis, a simplified method is developed for calculating the
changes in moments of inertia and center of mass when the body posture changes.

In the second phase some selected dynamics problems are investigated which can be used to
analytically predict some of the dynamic response characteristics of weightless man.

The third phase covers the results of the experimental validation phase of the study.
THE MATHEMATICAL MODEL

Weightless man will undergo transient angular and linear accelerations and decelerations as
he is subjected to unbalanced external forces. Internal forces and/or moments will be generated
and will react throughout the body when he moves his appendages. The mechanical response of the
human body to these forces will depend upon its biomechanical properties. To develop a mathemat-
ical model which can be used to predict how the human body will respond, these same biomechan-
ical properties must be incorporated into the model.

The human body is a complex system of elastic masses whose relative positions change as
the appendages are moved. To represent this system in exact analytical terms would require an
infinite number of infinitesimal, rigid masses and an infinite number of degrees of freedom.
"Degrees of freedom" refers to the minimum number of independent coordinates necessary to
completely specify the position of a system in space. As larger and fewer masses are chosen,
the representation becomes less complex but also less accurate. The problem reduces to a
determination of the optimum number and shapes of the idealized body segments on which to base
dynamic response characteristics. The criteria for development of the model are:
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a. Simplicity - the minimum number of components of simple geometrical shape
consistent with an accurate representation of the human body

b. Adaptability - the ability of the model to incorporate the biomechanical properties
of any particular individual

A simple, but reasonably accurate, model is desired to simplify analytical solutions to the
related dynamics problems and make it easier to interpret the results. The degree of accuracy
required depends upon the particular problem being investigated. For instance, when the flight
characteristics of a fighter aircraft are computed, the pilot is assumed to be a point mass at
some location in the fuselage. In this case the dynamic characteristics of the man are negligible
when compared to those of the aircraft. However, when individual propulsion and stabilization
devices for a space worker are considered, man's dynamic response characteristics become very
important. In this case, dynamic characteristics of the whole system depend primarily on the
man since his size and mass may equal or surpass that of the propulsion and stabilization unit.

Since a model for the latter application is desired for this study, a more refined model is developed

than has been previously described (refs. 14, 18).

Since the propulsion and stabilization unit may be tailored to each space worker, the mathe-
matical model must be able to accommodate any individual.

Development of the Model

The most important biomechanical properties which will affect the dynamic response charac-
teristics of man, and hence must be incorporated in the model, are:

a. Mass and mass distribution
b. Location of the center of mass
c. Moments of inertia
d. Elasticity and damping of the body structure
Items b and ¢ vary as the body position changes. This variation will affect man's response
characteristics. Item d becomes significant only when forces are applied very suddenly such as
during an impact; hence, it is not included in this study.

To develop the mathematical model, the following assumptions are made:

a. The human body consists of a-finite number of masses (or segments) and a finite
number of degrees of freedom (hinge points).

b. The segments are rigid and homogeneous.

c. Each segment is represented by a geometric body which closely approximates the
size, shape, mass, and center of mass of the segment.

The dynamic properties of these rigid, homogeneous, geometric bodies can be exactly
determined.
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Configuration of the Model:

The mathematical model may be thought of as a system of rigid, homogeneous bodies of
relatively simple geometric shape, hinged together to resemble the human body. For this study a
14-segment model is chosen. The division of the body into segments and the representative

geometric bodies are shown in figure 1.

HEAD and
ELLIPSOID AD
ELLIPTICAL ToRS0
CYLINDER S
j UPPER
FRUSTUM OF ARM
A RIGHT
CIRCULAR
CONE LOWER
ARM
OD
FRUSTUM OF UPPER LEG
A RIGHT
CIRCULAR
CONE LOWER
LEG

RECTANGULAR g@

PARALLELEPIPED

FOOT

"Figure 1. Segmented Man and Model

The hinge points are shown in figure 2 and are defined as:
a. Neck - hinged only at the base of the neck
b. Shoulder - hinged at the arm-shoulder socket
c. Elbow - hinged at the elbow joint
d. Hip - hinged at the leg-pelvis socket
e. Knee - hinged at the knee joint

The ankle and wrist joints are assumed to be rigid, since their motion produces very slight
variations in the total center of mass and moments of inertia.
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Figure 2. Location of Centers of Mass and Hinge
Points of the Human Body

The model described has 24 degrees of freedom—6 rigid body degrees of freedom plus 18
local degrees of freedom. The six rigid body degrees of freedom refer to the position and orienta-
tion of the body axis system. The other 18 degrees of freedom result from the 9 hinge points,
each with 2 degrees of freedom. For instance, if a set of spherical coordinates is located at one
shoulder-hinge point, two angles must be specified to exactly locate the position of the upper arm.

The body axis system, shown in figure 3, consists of a set of three orthogonal axes whose
origin is always at the body center of mass and whose orientation remains fixed with respect to
the axis system of the elliptical cylinder, as shown in figure 4. The Z-axis remains parallel to
the cylindrical axis, the X-axis perpeéendicular to the major and cylindrical axes, and the Y-axis
perpendicular to the minor and cylindrical axes. The positive directions and rotations are

indicated in figure 3.

CYLINDRICAL
AXIS

CENTER OF
MASS

MINOR
AXIS

MAJOR
AXIS

Figure 3. Body Axis System

Figure 4. Elliptical Cylinder
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A local body axis system is defined as a secondary orthogonal axis system located at the
center of mass of each segment. Each local body axis system is initially oriented in the same
direction as the primary body axis system, the position defined in figure 3. However, as the
segment moves, the local system remains fixed in position and direction with respect to that

segment.
Biomechanical Properties:

For the model to represent the dynamic response characteristics of man, certain biomechani-
cal properties must be incorporated into the model. As stated earlier, these properties include
mass, center of mass, average density, body dimensions, and moments of inertia. When these
properties are used to define the characteristics of the geometric bodies which make up the model,
the model will reflect the dynamic response characteristics of man. Some problems arise when
the model is to represent a particular individual, since methods have not been developed for
determining all these properties from living subjects. Fortunately, body dimension can be readily
attained. Hence, for the model developed, only body measurement data (lengths of the segments,
depths, breadths, and hinge point locations) is taken from the living subject. All other properties
are estimated by the most reliable statistical methods available for various weight and body
build groups. The methodology of obtaining the biomechanical properties of all the segments is
described below.

The masses of all segments, except the head and torso, are estimated from the regression
equations given by Barter (ref. 1) and are summarized in table I. The head and torso equations
are not given separately. Therefore, a method of determining the mass of these segments is
developed.

TABLE I

REGRESSION EQUATIONS FOR COMPUTING THE
MASS OF BODY SEGMENTS (ref. 1, p. 6)
(in kg)

Body Segment Regression Equation

Both Upper Arms 0.08 X Total Body Weight - 1.3
Both Lower Arms 0.04 x Total Body Weight - 0.2
Both Hands 0.01 X Total Body Weight + 0. 3
Both Upper Legs 0.18 X Total Body Weight + 1.5
0.1 9
0.0 7

Both Lower Legs 1 X Total Body Weight - 0.

Both Feet 2 X Total Body Weight + 0.

The center of mass location for the upper and lower arms and legs is taken directly from
Dempster (ref. 4), and is given later in table V. For the other segments the center of mass is at
one-half the length and on the axis of symmetry. The average density for all segments is also
based on Dempster's study, and listed in table V.

The lengths of the segments (defined as the vertical dimension of each segment as oriented
in figure 1) are based on the body measurement data determined as indicated in table II. The
points and methods of measuring are given in ref. 12. Alternatively, the lengths may be taken
directly from ref. 12 for a particular percentile group.
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TABLE 1

SEGMENT LENGTH FROM ANTHROPOMETRY

Segment Length

Head Stature ~ Cervical Height

Torso Cervical Height - Penale Height

Upper Arm Shoulder Height - Elbow Height

Lower Arm Elbow Height - Wrist Height

Upper Leg Penale Height - Kneecap Height +1.5 inches

Lower Leg Kneecap Height - Lateral Malleolus Height -1.5 inches
Foot Lateral Malleolus Height

NOTE: All heights are defined in ref. 12

The equations for calculating the mass moments of inertia for all the geometric bodies used
in the model, except the frustum, are found in most mechanics textbooks (for example, ref. 5) and
engineering handbooks (such as ref. 13). The equations for the mass moments of inertia of a
frustum of a right circular cone are developed, in parametric form based on the center of mass
location, in Appendix A. All equations are summarized in table III.

TABLE I

FORMULAS FOR CALCULATING LOCAL MOMENTS OF INERTIA
OF THE SEGMENTS

Moments of Inertia
Segment In,, Ives Iice
1 2
Head § m@® + b%) Lo Fma’
T —-—l—m(?»a.2 + 17) —l—m(3b3 + 27) 1 m(a® + b®)
orso 12 12 4
Upper and ~ .
Lower Arms m|A{x; }+ B4 I, m?
\62 ce 2— A
and Legs I
2 3
Hand Fm ) Lige Ixce
y l {/2 1 3 2
Foot g m 13 mic® + £°) Ivee
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The other basic dimensions required for the moment of inertia equations (such as the
diameter, major axis, and minor axis) depend upon the particular segment. Their determination
is included with the following general discussion of the geometric bodies chosen to represent
each particular segment of the human body.

Head, Hand, and Foot. —The motion of the neck is small in comparison to that of the head.
Hence, the neck is considered to be rigidly attached to the head. The head-neck combination is
then represented by an ellipsoid of revolution. The major axis, 2a, is equal to the length dimension
given in table II. The minor axis, 2b, is found from:

op = head cir1crumference (1)

since the cross-section is circular.

The mass, m, is given by:

m=§.onab= (2)

where 6 is the average density of the head.

The mass of the hand is very small in comparison to the whole body (about 0.7%) and, even
though its shape varies considerably, the effect of this variation is negligible. Hence, the hand
is greatly simplified and represented by a sphere. From:

m = -g— 61’7(81—3) 3)

we have: B\
diameter d = 2(’573 4)

The mass of the foot is quite small in comparison to the whole body (about 1.5%); hence, it
too is greatly simplified. The foot is represented by a rectangular parallelepiped whose height and
width equals the length dimension for the foot given in table II. The depth is equal to the instep
length, c (ref. 12).

Torso. — The torso makes up approximately 48. 5% of the total body mass. Consequently, its
biomechanical properties will have a significant effect on the total body response.

An elliptical cylinder is chosen to represent the torso. The dimensions of the ellipse of the
cross-section are given by:

Major axis (a) - Equal to the average of the body breadth measured at the chest, waist,
and hips :

Minor axis (b) - Equal to the average of the body depth measured at the chest, waist,
and hips

To further substantiate the choice of an elliptical cylinder to represent the torso, a more
detailed study was made to compare the average cross-sectional area of the human body to that of

an ellipse based on the average breadth and depth.
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Full-scale, cross-sectional area projections of the torso of a living subject of average build
were provided by the Anthropology Branch of the Behavioral Sciences Laboratory. These were
obtained by stereophotogrammetry (a photographic method of making contour maps of the human
body). The cross-sectional areas at the chest, waist, and hip were measured with a planimeter.
The average area of the subject was 107.7 square inches. The breadth and depth were measured
at the corresponding levels and averaged. The area of the representative ellipse was found to be
106. 0 square inches from:

Area of ellipse = 7ab (5)

where:
a = % average breadth (6)
b = % average depth : (7

Of course, the comparison for just one subject does not in itself justify the assumption that the
torso can be represented by an elliptical cylinder. It does indicate that this is a reasonable
approach.

Limbs. —A frustum of a right circular cone is chosen to represent the upper and lower arms
and legs because its center of mass can be made to coincide with that of the segment it represents.
Parametric equations for moments of inertia are developed in Appendix A which are independent
of all segment dimensions except length (given in table II). A sample calculation is also given in
Appendix A which illustrates the use of the parametric equations. Since there is no published USAF
anthropometric data which coincides well with the height of the knee joint, this dimension is
estimated by subtracting 1.5 inches* from the kneecap height.

Hinge” Points. — The hinge points are assumed to be on the center line of the segments and
are defined in table IV.
TABLE 1V

LOCATION OF HINGE POINTS FROM ANTHROPOMETRY

Coordinatest

Hinge
Point Y A
Neck o Cervical Height
Shoulder + % Biacromial Diameter Shoulder Height
Elbow + % Biacromial Diameter Elbow Height
Hip + 3 Hip Breadth Penale Height
Knee + 7 Hip Breadth Kneecap Height

- 1.5 inches

tAll X-coordinates are zero

NOTE: All measurements are defined in ref. 12

Analysis of the Model

Since the center of mass and moments of inertia depend upon the positions of the body seg-
ments, an analysis based on only one position is likely to lead to some false conclusions. This
section presents an analysis of the proposed mathematical model in two quite different positions.

* This estimation is based on unpublished data by Charles E. Clauser, Anthropology Branch, Human
Engineering Division, Behavioral Sciences Laboratory.
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Numerical Values:

Numerical values of the biomechanical properties of the model are determined for the USAF
mean man (height 69. 11 inches, weight 163.66 pounds) as described in Anthropometry of Flying
Personnel-1950 (ref. 12). The weight, average density, length, and center of mass location of
each segment are given in table V. From this data the coordinates of the hinge points and segment
centers of mass, as defined in figure 2, are determined and presented in table VI. Note that the
origin of the coordinate system in figure 2 is shifted to floor level. The coordinates in table VI
are given in terms of this transposed coordinate system since all heights in ref. 12 are based on
distance from the floor. From the data in tables V and VI and the formulas in table III, the local
moments of inertia are calculated and given in table VII. The moments of inertia of each segment
about the body axes are found from the parallel axis transfer equation:

I = Icg + I'Ifl])2 (8)

where I., is the local moment of inertia, m is the mass of the segment, and D is the distance
between the body axis and a parallel axis through the center of mass of the segment. These values

are also given in table VII.

TABLE V

BIOMECHANICAL PROPERTIES OF THE SEGMENTS

OF THE USAF MEAN MAN

, Centroid

Segment Weight Density Length Location

(Ibs) (Ibs/ft>) (inches) (% length)
Head 11. 20 71.6 10. 04* 50.0
Torso 78.90 68.6 24, 56%* 50.0
Upper Arm 5.10% 70.0 13. 00* 43.6t
Lower Arm 3.03% 70.0 10. 00* 43.0t
Hand 1.16% 71.7 3.69 50.0
Upper Leg 16. 33¢ 68.6 15. 80* 43,3t
Lower Leg 8. 05% 68.6 15. 99* 43.3%
Foot 2. 39% 68.6 2,73* 50.0
*Ref., 12
Y Ref. 4

¥Mr. C.E. Clauser,

10

Anthropology Branch, 6570th Aerospace Medical Research Laboratories
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TABLE VI

COORDINATES OF THE SEGMENT HINGE POINTS AND MASS CENTERS

Hinge Point

Coordinates (Inches)

*
and Symbol X v 7
Neck s A 0 0 59.08
Shoulder B 0 7.88 56. 50
Elbow o C 0 7.88 43,50
Hip eD 0 3.30 34.52
Knee L ) 0 3.30 18.72
Mass Center
and Symbol*
Head o1 0 0 64.10
Torso 02 0 0 46. 80
Upper Arm 03 0 7.88 50. 83
Lower Arm 04 0 7.88 39.20
Hand 05 0 7.88 31.68
Upper Leg o) ] 0 3.30 27.68
Lower Leg o1 0 3.30 11.80
Foot o8 2.45 3.30 1.37
*Symbols indicated in figure 2
TABLE VII
MOMENTS OF INERTIA OF THE SEGMENTS
FOR TWO POSITIONS*
Segmentst
Head Torso Upper Lower Hands Upper Lower Feet Total
Arms Arms Legs Legs
Ir,. Position A 0.0183 1. 0000 0.0157 0.0056 d.0004 0.0776 0.0372 0. 0006 1.2927
Position B 0.0183 1. 0000 0.0157 0.0044 0.0004 0.0620 0.0372 0. 0006 1. 2589
mD?  Position A 1.5114 1.0125 0.2199°1 0.0405 0.0292 0.4964 1.3114 0.17388 8.1963
Position B 0.7859 0.0092 0.0932 0.0407 0.0303 0.1496 0.0588 0.1252 1.7907
Ix Position A 1.5297 2.0125 0. 2356 0.0461 0.0296 0.5740 1. 3486 0.7394 9. 4890
Position B 0. 8042 1. 0092 0. 1089 0.0451 0.0307 0.2116 0. 0960 0.1258 3.0496
I"cn Position A 0.0183 0.9300 0.0157 0. 0056 0.0004 0.0776 0.0372 0.0028 1. 2269
Position B 0.0183 0. 9300 0.0157 0.0056 0.0004 0.0776 0.0372 0.0028 1. 2269
mD?®  Position A 1.5114 1.0125 0.1517 0.0000 0.0137 0.4582 1.2925 0.7361 7.8284
Position B 0.7950 0.0734 0.0292 0.0002 0.0188 0.1190 0.1015 0.1560 1.7176
1y Position A 1.5297 1.9425 0.1674 0.0056 0.0141 0.5358 1.3297 0.7389 9.0553
Position B 0.8133 1.0034 0.0449 0.0058 0.0192 0.1966 0,1387 0.1588 2.9445
I;,. Position A 0.0124 0. 2300 0.0018 0. 0008 0. 0004 0.0154 0.0037 0.0028 0.2922
Position B 0.0124 0.2300 0.0018 0.0020 0.0004 0.0310 0.0037 0.0028 0. 3258
mD®  Position A 0.0000 0. 0001 0.0682 0.0405 0.0155 0.0382 0.0188 0. 0085 0. 3797
Position B 0.0091 0.0642 0.0723 0. 0405 0.0195 0.0459 0.0804 0.0420 0.6746
1. Position A 0.6124 0. 2301 0.0700 0.0413 0.0159 0.0536 0.0226 0.0113 0.6719
Position B 0.0215 0.2942 0.0742 0.0426 0.0199 0.0769 0.0841 0.0448 1.0004

* Positions A and B are shown in figure §

t All values are slug-ft?
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Analysis:

The dynamics of a rotating body in space depends primarily upon two factors: the center of
mass location of the whole body and the moments of inertia of the whole body about axes through

the body center of mass.

The variation of the center of mass of the human body has been studied extensively (ref. 11)
and can be accurately predicted for a given body position without difficulty. The center of mass of
the model is found to lie 39.09 inches from the floor or 56.6% of the body length. This falls
within the 55 to 57.4% range determined experimentally by Dempster (ref. 4) and agrees closely
with an average of 55.6% measured by Swearingen (ref. 20) on five living subjects.

Predicting the moments of inertia is somewhat more involved and may be less accurate.
Therefore, the mathematical model is analyzed to determine:

a. Which segments have the greatest effect on the total moment of inertia
b. The degree of approximation by representing the segments as geometrical bodies
c. Which segments can be further simplified without a significant loss in accuracy

The first position, standing erect with arms at the sides (position A, figure 5), is considered
the normal position. For the second position (position B, figure 5), the arms and legs are drawn up
close to the torso to give a near-minimum moment of inertia about the X- and Y-axes. The
moments of inertia for position B are calculated in much the same way as for position A and
presented in table VII. For this new position, the center of mass moves 7.0 inches toward the
head along the Z-axis and 1.9 inches forward along the X-axis.

30° 30°
30.

Figure 5. Body Positions

The moment of inertia of the whole body about an axis is given by the sum of the moments of
inertia of all segments about that axis. The moment of inertia of each segment of equation 8
consists of two parts which are defined as:

12
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Local Term I.;.— The moment of inertia of the segment about an axis through its center
of mass parallel to the given axis.

Transfer Term mD?. ~— A quantity given by the product of the mass of the segment times
the square of the perpendicular distance between the two parallel axes.

Since the local terms are the most tedious to compute, it is convenient to see what contribu-
tions they make toward the total moment of inertia. If the contributions are small, these terms
may be neglected. In figure 6, the local and transfer terms for the two positions are compared. .
Since these quantities are nearly the same about the X- and Y-axes, the X-axis is not indicated.

33 LOCAL TERM
TRANSFER TERM

Figure 6. . Comparison of Local to Transfer
Moment of Inertia Terms (expressed
as a percent of the total moment
of inertia) :

ABOUT THE Y-AXIS ABOUT THE Z-AXIS

Figures 7 and 8 illustrate the contribution each segment makes toward the total moment of
inertia, and what effects each local and transfer term has on the total moment of inertia.

1 LOCAL TERM
TRANSFER TERM
POSITION A POSITION 8

HEAD

TORSO

Figure 7. Percent of Total Moment of Inertia UPPER ]| ARMS

about the Y-Axis for Each Segment

LOWER ]| ARMS
HANDS
UPPER || LEGS

LOWER || LEGS
NSNS

FEET
© 30 20 10 00 - 10 20 30
PERCENT PERCENTY
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[ LocaL TERM
TRANSFER TERM
POSITION A POSITION B
L 3
S N
30 20 10 00 10 20 30
PERCENT PERCENT

Figure 8. Percent of Total Moment of Inertia about the
Z-Axis for Each Segment

Conclusions:

A close look at figures 6, 7, and 8 reveals some important information. In general, the
local moment of inertia terms cannot be neglected, particularly about the Z-axis. However, the
contribution of the local term for several segments is zero or negligible., Hence, it is unnecessary
to compute the local moment of inertia for the hands, lower arms, and feet, since their sum is
less than the errors due to simplifying the human body. Further, the geometric representation
for the upper arms, upper and lower legs, and head need not be too accurate. For instance, a
33% variation in the moment of inertia of the upper arm would change the total moment of inertia
(for position A) about the X-axis only +0.1%. The total moment of inertia of the torso must be
computed with much more care since it may contribute 10% to 35% of the total moment of inertia
depending on the axis and position.

Simplified Approach:

Based on the above conclusions, a simplified method is developed for computing the moments
of inertia for various body positions. Starting with the moments of inertia for position A computed
above as initial conditions (Ix,, Iv_, I ), this method yields the moments of inertia for any
other position (Ix, Iy, I.) by taking into account only the changes in the transfer terms and the
relative position of the body axis system. This approach greatly simplifies the mathematics, and,
although it neglects the changes in the local terms, there is only a slight reduction in accuracy.

14
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The moment of inertia of the model (consisting of "p'" masses or segments) about the
X-axis for position A is given by:

p p
= 2 2
IXO = lfl Ixiocc + ifl ml(Ylo + Zlo) (9)

When the body position changes, the moment of inertia (I,{ ,) about the same axis is given by:

, p p . s
Ixo = X I"i + mi(Yi + Zi ) . (10)
I T

To find the moment of inertia about a parallel axis through the center of mass for this new
position, the Parallel Axis Transfer Theorem is used:

I, = Lo + m, (Y + Z°) (11)
Now:
v Xre TR p p 3 2
Ix + mtot(Y + Z) = Z: I)(il:6 + T mi(Yi + Zi) (12)
i=1 i=1
Subtracting equation 9 from equation 12:
2 F2 p P :] 2
Iz + mtot(Y + 2 )- Ix°= z IxicG + Z ml(Yl + Zl)
i=1 i=1
p p s .
-z Ixi°ce- .Z my (Yio + Zio (13)
i=1 i=1
Assuming the local terms do not change:
p p

and equation 13 becomes:

p ——
b=l - 2 my [(¥3, + 22)- (¥ + 2] - m,@° + Z%) ()
i=

Now if only 'n" masses change position, the coordinates of the ''p-n" masses will remain
the same and will cancel out. Then:

n
Lo= L% my[(Y3+ 28) - (Y]+ 2])] -mo (T2 + 29 (19)
i=1

15
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In a similar manner the equations for the moments and products of inertia about the other
axes are found to be (ref. 8):

n e
Iy =Iy, - T m [(xﬁ, + Zf) - (X} + z;ﬂ -m  (X? +Z7) (7)
i=1 '
n ~a —
I, =1, - z:l m; [(xf° + Y§) - (X + Yf)] -m (X?+ Y (18)
i=
n ' —_—
Lo = T my [(KY) - (%5, Y,)] - myoy(XD) (19)
S :
n ——
Iy; = T my [(YiZi) - (Y5, zio)] - m (YZ) (20)
i=1
n o
I,x = T my [(zixi) - (zioxio)] -m_ (ZX) (21)
i=1 tot
where: _ ; B
- 1 D
Y=o T m(Y;-Y;) (23)
tot i=1
— 1 1
Z=qm— T mZ-7Z) (29)
tot i=1

mj = mass of the ith segment

xiYiZi = coordinates of the center of mass of the ith segment after some change

Xio Yio Zio = coordinates of the centers of mass of the ith segment before some change

miot = total mass

and "n" is the number of segments which change positions from the initial conditions. For
instance, if one arm is raised from position A, the center of mass of the upper and lower arm

and hand will change. Three segments are involved, so n = 3 and m, might refer to the mass of the:

upper arm, m- to the mass of the lower arm, m; to the mass of the hand.

Equations 22, 23, and 24 are exact and will always yield the coordinates of the new center of
mass with respect to the center of mass location for position A.

16
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Up to this point, nothing has been said about products of inertia (Ixy, Iv;, I;x). While the
body axis system in position A coincides with the principal axes of inertia and there are no
products of inertia, this will not be true in general. Principal axes of inertia are defined as a set
of orthogonal axes about which the products of inertia are zero. In fact, in position B the
principal axes are tilted forward (rotated about the Y-axis in the negative direction) approximately
8° from the body axes. Therefore, a product of inertia, I,, exists.

From equations 16, 17, and 18 the moments of inertia of the model are computed for positions
B and C. These results are compared with exact results taking the local terms into account in
table VIII.
TABLE VIII

COMPARISON OF MOMENTS OF INERTIA FROM EXACT
AND APPROXIMATE METHODS

Moments of Inertia (Slug-ft®)
Iy for I for I, for
Position Position Position
B C B C B C
Exact Method 3.0496 12.225 | 2.9445 8.8430 | 1.0004 3.6210
Approximate Method 3.0845 12.225 | 2.9445 8.7917 | 0.9668 3.5356
Percent Error +i. 14 0.00 0.00 -0.58 -3.36 -2.36

The approximate method yields exact results for I, position C, and Iv, position B. This
occurs because there is no change in the local moment of inertia terms, I,(CG for position C and
chc for position B.

Thrust Misalignhment

For a man (initially at rest) to move between two points in space, some external force must
be applied. If translation is to take place without rotation, the resultant force must act through
the man's center of mass. Since man is not a rigid body, flexing and bending the various appendages
will cause the center of mass to change position with respect to the body. Therefore, it is
unlikely that any single force device would act through the center of mass. The case of a single
force device rigidly attached to the space worker so that a constant force is applied, not through
the center of mass, provides an interesting space dynamics problem. It has practical application
to any propulsion and stabilization device since thrust misalignment might occur during a
malfunction of the system or from poor operator technique.

17
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Consider a thrust misalignment which produces a constant moment about one of the principal
moment of inertia axes. ¥ Iy = Iy and the moment is applied about the Y-axis, the resulting
motion will be a spin about the Y-axis and the center of mass will move in the plane of the
XZ-axes. Proof of this statement and complete derivation of the equations of motion are given in
Appendix B. Even for this restricted two-dimensional problem, a closed form solution could not
be achieved. However, the equations of motion were nondimensionalized and, by applying the
Runge-Kutta Method {ref. 16), a machine solution was achieved on the AFIT IBM 1620 Digital
Computer. A nondimensional plot of the velocities is given in figure 14 and the trajectory in

tigure 15.

For this special case of plane motion, the trajectory always approaches a straight line
which is inclined 45° to the original heading. While the angular velocity increases as long as the
misaligned thrust is applied, the linear velocity of the center of mass approaches a limit as can be
seen in figure 14.

As an example, if the USAF mean man is subjected to a 10-pound thrust misaligned 7.0
inches along the Z-axis, in the direction of the X-axis, a constant magnitude moment of 70 in-lbs
is applied about the Y-axis. When the values of moments of inertia for position B are taken as
principal moments of inertia, a solution to this problem (see the example problem at the end of
Appendix B) indicates that at 5 seconds the man will have been accelerated to an angular velocity
of 96 rpm; he will have completed four revolutions, and reached a linear velocity of 1.6 ft/sec.
After 10 seconds, he will have made almost 16 revolutions, and will be rotating at a rate of
191 rpm while moving at a rate of 1.7 ft/sec.

Maneuvering

A problem somewhat similar to the misaligned thrust problem is controlled rotation or
maneuvering. The space worker will be equipped with a propulsion and stabilization unit to
maneuver around his or other space vehicles. The question arises: Is there an optimum way to
perform a particular maneuver?

In this section a very simplified problem is analyzed with the objective of showing that there
is a considerable variation in the fuel required to execute a given maneuver. The optimum condi-
tion is achieved when the maneuver is completed with minimum fuel consumption.

Consider the following hypothetical problem. The space worker is moving with a constant
initial velocity, V, (relative to the space vehicle), and he desires to make a 90° change in his
flight path. How does he direct his thrust (thrust vector) so that, after a period of time, T, he is
moving at the same rate, V,, perpendicular to the original heading, and a minimum amount of

fuel is consumed?
Three Thrust Programs:
Three thrust programs are analyzed based on the following assumptions:
a. The man (including the maneuvering unit) is a mass particle.

b. The period, T, of thrust application is small so that the mass, m, of the system is
considered constant. ' :

These assumptions reduce the problem to one of particle dynamics and neglect problems
associated with the orientation of the man and how the particular thrust program is achieved. In
all three problems the same thrust is applied although the length of time and the direction vary.
Since fuel consumption will depend solely upon the time applied for a constant magnitude thrust,
the problem becomes one of determining the minimum thrusting time.
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Case I. — First consider the case in which the thrust, Fo, is applied in direct opposition to
the initial motion until this motion ceases. Then Fo is applied perpendicular to the original flight
direction until a speed, Vo, is reached. From Newton's Equation:

d
F = 25
a (mV) (25)
and integrating with respect to time, F = -F,:
-Fot = mV + C (26)

Applying the initial conditions, t = 0 and V = V.

t =l;3—0 (Vo -V) (27)

Nowatt=1t,, V =0, so that the time to stop is t,:

mV,

t, = Ty (28)
By the same approach, the time to accelerate to Vo again is tz:
to = ZFe (29)
Therefore, the total thrusting time, T, is given by:
T=1t + tz: = 211;.‘:0 (30)

If the initial velocity is in the X-direction and thefinal velocity is in the Y-direction, the
velocity components, Vy and Vv, will vary as shown in figure 9, for Case I. While no values are
shown for the plots in figure 9, all are drawn to the same scale so that the results may be
compared.

Case II. —Suppose the decelerating force, Fo, is applied at a 45° angle in opposition to the
initial motion so that one component of the force, Fx = -0.707F,, acts in direct opposition to the

original motion. Then the other component, Fy = 0.707F,, will act normal to the initial flight
path. Writing Newton's Equation in component form:

Fy = c%(mvx) (31)

and integrating with respect to time, Fx = -0.707Fo:

-0.707F,t = mV, + C (32)
Applying the initial conditions att =0, Vy = Vo:
=0 -
t = 507, (Vo ~Vx) (33)
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Nowatt = t, and Vx = 0, the time to stop is t,:

t o= 1.414 270 (34)
o}
By a similar approach:
to = 1.414 20 (35)
(o}

Now Fy and Fy are applied simultaneously so that the complete maneuver is completed

during time, t,, or:
tl = tz =T (36)

The variations of Vy and Vy are shown in figure 9.

Case III. —Consider now a case in which the thrust is applied normal to the flight path until
the man has completed a 90° turn. Then the thrust, Fo, will be equal to the centrifugal force or:

2
Fo = _H_lplo_ (37)

where p is the radius of curvature. Since there is no force applied tangent to the flight path,
Vo remains constant and the flight path is an arc of a circle of radius, p. The arc (S) will be one-

fourth of a circle.

The time to cover this distance is given by:

58 @)
But from equation 37: .
p = m}.}? (39)
so that equation 38 becomes:
t = "2‘;:"’ (40)
and since t = T:
T = 1.57 BYe (41)

Fo

The variation of the X- and Y-components of the velocity are shown in figure 9 also.
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Figure 9. Velocity Versus Time for Three Turning Maneuvers

Conclusions:

While only three cases of the above plane motion problem are considered, some significant
differences in maneuvering times are noted. If Case II is taken as a standard of comparison, we
see that Case I takes 41.5% longer to execute the 90° turn and Case III takes 11.0% longer. In
terms of fuel consumption, Case I appears to be quite impractical. No restriction is made on the
distance required to complete the maneuver. Since this distance will vary for the three cases,
any such restriction would require a reanalysis of these thrust programs.

Free-Body Dynamics

Free-floating man cannot, without some external force, displace his center of mass. However,
he can change his attitude by properly manipulating his appendages. Nine maneuvers have been
proposed by Kulwicki (ref. 14) for achieving self-rotation.

In Appendix C a more general equation of motion is derived based on conservation of angular
momentum (i.e., in the absence of any external force, the total angular momentum remains
constant). This derivation is based on an analysis of spacecraft docking dynamics by Grubin
(ref. 10). While no particular maneuvers are described, the equation presented and the method of
its development can be applied to a wide range of free-body dynamics problems.
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As an example of a free-body dynamics problem, consider the free-floating space worker in
an initial position with both arms raised vertically above his head. If he swings both arms
(parallel to each other) forward an angle v, his torso will be tilted backward an angle ¥. The
equation for the change in body attitude (developed in Appendix C) becomes for the USAF mean man:

y = {- -0. 86758 arctan (0. 86507 tan -;-’-) (42)
or for each revolution of the arms, ¥ = 23. 8°.

Stability of Rotation

The moment-free motion of an unsymmetrical rigid body with principal moments of inertia—
I;, Iv, and I, —is an unsteady periodic precession and nutation about the resultant angular
momentum vector which is fixed in space. Steady rotation exists only about the principal axis of
maximum or minimum moment of inertia, the principal axis of intermediate moment of inertia
being unstable. Rotation about the axis of maximum or minimum moment of inertia is considered
stable; that is, if the spin axis deviates slightly from the resultant angular momentum vector,
there is no tendency for this deviation to grow. This can be said only for a perfectly rigid body in
the absence of external moments (ref. 22).

Consider a nonrigid body rotating in space. Bechuse of energy dissipation, the Kinetic energy
of rotation will decrease with time. The equation for the decrease in kinetic energy, T, is given by
Thomson (ref. 22) for a body of revolution (I, =Iy), with principal moments of inertia—I,, Iy, and
I; —to be:

T = Izwge—i- -1)-(sin ocosa)a (43)
where:
wo = initial spin velocity
o = angle between the spin axis and the angular momentum vector
& = rate at which the angle a is changing
Since T is always negative, & is negative for.i.z > 1 and positive for%Z <1. IfI, is the minimum
X X

principal moment of inertia, then ‘f: is less than one, ¢ is positive, and « is increasing. Thus, the
principal axis of minimum moment of inertia is one of unstable equilibrium, and a small deviation
of the spin axis from the angular momentum vector will increase due to energy dissipation. Man

is certainly not a rigid body and, under cyclic stresses induced by gyroscopic precession, energy

will be dissipated.

Since we have shown that rotation about the axis of minimum inertia may be unstable, there
is reason to believe that weightless man may possess only one stable axis of rotation. This is
rotation about the principal axis of maximum moment of inertia.If he is initially rotating about the
principal axis of maximum inertia, weightless man could change the axis of rotation by moving
his limbs. For this case, we can say that he would possess no stable axis of rotation.

Application of a Torque

Applying a torque to some relatively fixed object will be part of the function of the space
worker performing assembly and repair tasks. The resulting reaction of the free-floating worker
will depend upon how the torque is applied (i. e., the magnitude of the torque as it varies over a
short interval of time). This reaction has been studied by Dzendolet (ref. 7)-—however, without
exact knowledge of the nature of the torque input, and under normal 1-G conditions.
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In this section a general equation of motion is developed and solved based on the assumption

(experimentally validated and described in the next section for a short-duration, impulselike

torque) that the torque input varies as a half-sine wave. Then:

M(t) = My sin l'rg
where:
M(t) = torque as a function of time
My = maximum torque achieved
T £ period of torque application
t = time '

For rotation about one of the principal axes of inertia we have:

I = M(t) = Musin -
where:
I = moment of inertia
w B angular acceleration

Assuming I is constant, we have, after integrating:

Iw= —hi;z(l - cos—’%—)

and att=T: M. T
- M

lw=2 T

_2My T
w 7l

Equation 48 then yields the angular velocity at the end of the torque application period.

(44)

(45)

(46)
(47)

(48)

Suppose the USAF mean man reaches overhead to grasp a valve handle (for instance, a fuel

shut-off valve on the space station). What will happen if he attempts to close the valve with a

sudden twist, and the valve is frozen and does not turn?
Assume the following conditions exist:

a. The space worker is unrestrained.

b. The torque is applied about the Z-axis (a principal axis).

If the principal moment of inertia about the Z-axis is:
I, = 0.55 slug-ft®

and the maximum torque developed is 2.71 ft-lbs over a period of 1.1 seconds, then, by equation

48:

w =0. 63662 UL

3. 45 radians/second
32.9 rpm

Hence, the space worker will be spinning about the Z-axis at a rate of 32.9 rpm after the

torque application.
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EXPERIMENTAL RESULTS

The last phase of this study was concerned with experimental validation of some of the
analytical results derived in the previous section. Two experiments were conducted by personnel
of Crew Stations Branch of the Behavioral Sciences Laboratory, under weightless conditions.
Zero-gravity conditions were achieved for periods up to 30 seconds in a USAF KC-~135 jet trans-
port, flying parabolic trajectories. All experiments were recorded on motion picture film.

Stability Experiment

Object:

This experiment was designed to demonstrate instability of a nonrigid body rotating about
the axis of minimum moment of inertia.

Procedure:

The free-floating subject (holding position A, figure 5, as rigidly as possible) was spun
about the Z-axis by means of a rope wound around the waist. Part A: The subject held position
A throughout the free-rotation period. Part B: Two to three seconds after spin-up, the subject
raised one knee to induce a wobble to the spin.

Results and Discussion:

Part A: Spins up to 120 rpm were achieved and appeared stable for the short impact-free
periods (5-8 seconds).

It was intended to perform the spins so that the body Z-axis was parallel to the pitch axis of
the aircraft, to eliminate any cross-coupling effects due to the rotating reference system. However,
there were practical difficulties in this method, and, to get satisfactory spins and photographic
coverage, the spins were imparted with the body Z-axis parallel to the longitudinal axis of the
aircraft. The cross-coupling effects apparently were small as no significantly different results
could be detected between the two spin axis orientations.

Part B: When one knee was flexed, a wobble in the spin did result, but the test area was not
large enough to allow the subject to tumble freely without striking parts of the aircraft. Maximum
impact-free periods from 5 to 6 seconds were not long enough to conclusively demonstrate a
change to stable rotation about the X- or Y-axes. A typical run is shown in figure 10. The photo-
graphs were taken in sequence, left to right, at 0. 5-second intervals.

On two of the runs the subject spread both arms and legs during the impact-free period and a
decrease in rpm from 2.5 to 1 was observed.

Torque Experiment

Object:

This experiment was designed to determine the nature of a short-duration, impulselike
torque which weightless (and hence frictionless) man can exert on a rigidly mounted handle.

Apparatus:

A small beam fitted with strain gages was attached inside a tubular handle, 6 inches long and
3/4 inch in diameter. The strain gage outputs were fed into the aircraft oscillograph so that
strains produced deflections which were plotted as functions of time. The system was calibrated
so that the deflections could be interpreted as torque applied to the handle.
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Figure 10. Sequence Photographs of the Free Rotation of a Subject
Initially Spun About a Head-to-Toe Axis (taken at 0.5~
second intervals)

Procedure:

The weightless subject grasped the handle with his right hand and with near-maximum
strength applied a quick counterclockwise torque of approximately 1-second duration. Part A:
During the torque application and resulting rotation, the subject held body position A, except that
the right arm was extended over the head to grasp the handle. Part B: During the torque applica-
tion and resulting rotation, the subject held a sitting body position (Indian fashion with legs crossed)
and grasped the torque handle with the hand, arm extended, directly in front of the torso about
shoulder level.

Results and Discussion:

Two typical torque versus time plots are shown in figure 11. As can be readily seen, these
curves closely resemble a half-sine wave. From equation 48 developed in the previous section,
the resultant angular velocity can be calculated when the moment of inertia is known. The moment
of inertia is found by the methods of the first phase. These velocities are compared in table IX
to actual velocities determined from motion pictures of the experiment. The greatest difference
arises from not being able to determine the exact axis of rotation (or direction of the angular
velocity vector), and, hence, the moment of inertia about that axis. This error could be as large
as £10%. Also, angular velocities determined by photographic means can vary +2%. The maximum
error considering all sources should be less than +15%.

Conversely, the moment of inertia can be calculated from equation 48 when the measured
angular velocity is used.

The maximum torques achieved during weightlessness averaged (for 6 runs with 2 subjects)
66.6% of the peak torques under static 1-G conditions.
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Figure 11. Typical Plots of the Torque That Man Can Exert
While Weightless as e Function of Time

TABLE IX

COMPARISCN OF ANALYTICAL AND EXPERIMENTAL ANGULAR VELOCITIES
FROM THE TORQUE APPLICATION EXPERIMENT

Rﬁn T M, I Anal;otical Exper‘fmental Error*
Number (seconds) (ft-1bs) (slug-ft?) (rad/sec) (rad/sec) (%)
2 1.10 2.71 0.55 3.45 3.59 -3.9
5 1.00 3.34 1.05 2.02 1. 86 +8.6
6 0. 88 3.75 . 1.05 1.99 1. 86 +7.0

26
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CONCLUDING STATEMENTS AND RECOMMENDATIONS
FOR FUTURE STUDY

The mathematical model developed to represent weightless man is based on the biomechanical
properties of the human body. Since there are no methods of determining many of these properties
accurately from a living subject, statistical data is used which is a function of the total body
weight. Body dimensions, however, can be measured for any given living subject.

In the first phase the transfer moment of inertia terms are shown to be a very important part
of the total moment of inertia. Since the transfer term, mD?, depends upon the square of the
distance between the mass and the inertia axis, it is more sensitive to variations in distance than
to mass variations. Therefore, a model based on anthropometry of a given subject will reflect the
dynamic response characteristics of that subject.

The statistical methods of estimating the other biomechanical properties (mass, mass center,
and density) presented in refs. 1, 2, 4, and 6 are being refined and made more adaptable to
living subjects by the Anthropology Branch of the Behavioral Sciences Laboratory. Hence, in the near
future, moreaccurate methods of determining these propertiesfrom a living subject may be available,

The assumption that the human body consists of 14 rigid and homogeneous segments is a
convenient, but not too realistic, idealization. However, for the intended application of the model
to dynamics problems facing weightless man, this assumption will not produce any great inac-
curacies. For example, first space suits will be equipped with large environmental backpacks
and/or propulsion and stabilization systems which will not allow much flexing of the back.
Therefore, the assumption that the torso is rigid actually fits the physical situation.

A simplified approach is presented for calculating the new center of mass location and
moments of inertia when the model's position deviates from the standing straight position (figure
5, position A). The resulting equations can be easily represented electrically so that the human
system parameters can be programed into an analog simulator of a propulsion and stabilization
system for the space maintenance worker.

The model is based on a nude man to establish unencumbered man's baselines (without
hardware). Hardware, such as the space suit, magnetic shoes, environmental pack, etc., can be
included after man's basic response characteristics have been investigated.

The analytical results are qualitative in nature and are intended to offer a first approximation
to the selected problems. The simplifying assumptions are not, in general, too restrictive. For
instance, the assumption that man is a body of revolution so that I, = Iy is almost satisfied for
many positions (note that, for position A, I, = 1.046Iv or I, is 4.6% greater than Iv). Each
restricted problem has practical application to the actual problems of the space worker. In
summary, these problems demonstrate the requirement for a propulsion and stabilization device
for the space worker,

The experimental results are preliminary in nature. However, the stability experiment
cannot be used to verify the analytical results because of the short impact-free rotation period.
The torque experiment did successfully demonstrate the practicality of the apparatus and the
approach used. More data is required, however, before the analytical results can be conclusively
established.
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APPENDIX A

PARAMETRIC STUDY OF THE CENTROID LOCATION
AND
MOMENTS OF INERTIA OF A FRUSTUM

The frustum of a right circular cone is chosen to represent the upper and lower arms and
legs because its centroid can be made to coincide with the centroid of the segment it represents.
The segments of the body are assumed to be bodies of revolution with known centroid locations.
The location of the centroid becomes an important parameter in defining the properties of the
frustum. This appendix presents a derivation of the equations for the centroid location and
" moments of inertia of a frustum. The equations for the moments of inertia are then expressed in
much simpler form in terms of the centroid location. The mass, length, and density of the frustum
are left as parameters.

Centroid of a Frustum of a Right Circular Cone

The centroid of the body shown in figure 12 is given by:

Y J vam A-1
- Jdm (A-1)

where:
dm = &7 X?dY : (A-2)

and § is the density (assumed to be constant at every point in the body). Then, for a frustum of
length, ¢, and mass, m, we have:

4 P
= [ dm = 87 [~ X*dyY (A-3)

for: .
(R-1)Y

X=R- 1

(A-4)

Figure 12. Frustum of a Right Circular Cone
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Substituting equation A-4 into equation A-3 and integrating, we have:
]
m = ———;”’(Ra + Rr + r®) (A-5)

Evaluating the numerator of equation A-1 between the limits from 0 to 2, we have, after
substituting in equation A-2:

1 1
J Ydm = o7 YX°dY (A-6)
2
= 61’2” (R* + 2Rr + 3r%) (A-7)
Substituting equations A-3 and A-7 into A-1, we have:
< _ 4(R? + 2Rr + 3r2) .
Y—4\RT+Rr+?‘ﬁ (A-8)

o) )]

L .
_?l : (_r_) (r)2 J  (A-9)
+ R + “ﬁ- :
_ A1+ 2u + 3y
_4(1+y,+p3a) (A-10)
where:
k=R (A-11)
Introducing now the nondimensional location at the centroid:
n = % (A-12)
we have:
_ 11 + 2u + 3u® _
m 4( T+p + 45 -13)
or:
4n -1
K (A-14)

S1-2n:/-127° ¢+ 127-2

When r = 0 the frustum becomes a right circular cone. When r = R the frustum becomes a
right circular cylinder. The ratio, é , will vary so that:

0 < ux<i (A-15)
and: ‘
f<n=<t (A-16)
To insure that ¢ > 0, equation A-14 must be:
4n -1
“=1-217+f-12n2+12n—2' (A-17)
32
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Moments of Inertia of a Frustum of a Right Circular Cone

The moment of inertia about the X-axis of the element of mass shown in figure 12 is given
by:

Iy = fFati + [P ¥?dm | (A-18)

where dI{ is the moment of inertia of the element about the X'-axis (see figure 12) and dm is
given by equation A-2. Since the element of mass is a thin circular disc, its moment of inertia
about an axis through its center of mass is given by:

2
ary = = Zm = 6T"x"dY (A-19)
Substituting equations A-2 and A-19 into A-18 and carrying out the integration:
4 .
I, = 6m j: (—’%— + XEYB) dy (A-20)
=—6%&"' + R%r + R®r® + Rr® + r*)
3
+ 6316{’ (R® + 3Rr + 6r?) (A-21)

After some rearranging, we get:

6mi0 R?[3R?
Le=—3 [200(1+“+ HE o+ w4t
22 2
+ 100 1+ 3y + 6u )] _ (A-22)
where:
o=1+pu 4+ u® (A-23)
Equation A-5 can be written: :
67 LoR? -
m= —5— (A-24)
or:
2 _ 3dm
R™= $710 (A-25)
Substituting equations A-24 and A-25 into A-22:
_ 9 (1 +p+p® + p® 4+ p*\/m
L=m {20#( o* )('67,)
1(1+ 3u + 6u®
*1‘6(““—_0 12 (A-26)

33




Letting:

and:

then:

___?_(1+p+p’+p.a+p4

0-2

By the Parallel Axis Transfer Theorem:

then:

Substituting equations A-10 and A-29 into the above equation:

where:

Now:

where:

= m[201r\
3(1+ du + 10p® + 4u° + pt
2

+ —

Ix = IXCG + l'nD2

Ii,, = I - mD?

9 fl+p+pPsp’sy

0,2

80

(o4

ofe) -+

(1

Iv=

dIy

+ 4u + 10p® + 4p®
-}

c

4
J, a1

% r?dm

26 X*dy

By an approach similar to that above, we get:

I,=

6 ¢

2m? A

Since the frustum is a body of revolution, then:

Iy

=1,

AMRL-TDR-63-18

(A-27)

(A-28)

(A-29)

(A-30)

(A-31)

(A-32) .

(A-33)

(A-34)

(A-35)

(A-36)
(A-37)

(A-38)

(A-39)

In equations A-29, A-33, and A-38 the quantities A, B, and C are constant for a given value
of . With the AFIT IBM 1620 Digital Computer and the assistance of Prof. R.T. Harling of the
Department of Mathematics, the values of u, A, B, and C were calculated for intervals of 0. 001
over the range 0.250 <7 <0.500. The results are presented graphically in figure 13. :
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Figure 13. Parameters A, B, C, and [ versus 7

The following Fortran Computer Program was used, where R=7n, U=y, S =0, andH
is the interval between successive values of R,

ACCEPT, H, RIN
R = RIN
Pl = 3,14159265

L U= (4,%R-1,)/(1,-2,%R+(~12,*R¥R+12,%R-2,)**0,5)

U2 = U*y

U3 = U2*U

Uk = U3*U

S = 1,+U+U2

A = ((S+U3+UL)*9, )/ (20, *P1*S*S)

B = ((1,+4b4,%U+10,%U2+4,%U3+04)*3,)/ (80, *S*S)
C= ((1, +3.*U+6 *U2)*O 1)/s

IF (SENSE SWITCH 2 ) 13, lh
13 PRINT 19,R,U,S,A,B,C
14 PUNCH 21 R U.S.AB.C

R =

IF (R-o sol) 4,18,18
18 ST@P
19  F@RMAT (/F 5.3,Fi10,5,F11,5,3F10,5)
21 EGRMAT (F5.3,Fi0.5,F11.5,3F10.5)

ND
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Note that when n = 0. 250 the frustum reduces to a right circular cone, and when n = 0.500
the frustum becomes a right circular cylinder.

This is reflected by the equatmns for momentsof inertia. For example, when n = 0.250, pu = 0,
and 0 =1, equations A-27, A-28,' and A-34 yield:

= 0.14323 B = 0.03750 C = 0.10000

Then equations A-33 and A-39 become:

Lieo = I, =‘m[o.14323(5“l)+ 0.03750 :P]
and equation A-38 becomes:
I, =55 (0.14323)

Now the mass of a right circular cone is given by:

m="10% 12 = 1.0478 6 17
so that:
Iig, = Lo, = [o 14323(19%13—?ii)+ 0. 03750 L]

m (0.1500 r* + 0.0375 1%)

Ls
m(“ *T)

2 x 1.0478 64 x*
54

3
20
and: [

IVcc

14323

/
i
=3
S
S
8
ch

These are the exact equations for moments of inertia of a right circular cone.

Similarly, whenn = 0.500, p = 1, ¢ = 3, then:

= 0.07957 B = 0.08333 C = 0.3333
and: m
Inge = I_zn = m[0'07957(6_1,)+ 0.08333 L’]

_2m®
I,,, = 35 (0.07957)

Now the mass of a right circular cylinder is given by:

m=06wnr®y
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so that: 5L
Inge = Iz, =m0, 07957(-71-) + 0.08333 1°
= m [0.2500 r* + 0.08333 ¢° ]
=-1r-nz-[3r2 + L’]
and: 2
I,,, = m(0. 07957)(?%91’#)
= 0.5000 mr?
_ mr®
2

These are the exact equations for moments of inertia of a right circular cylinder.

Sample Calculation

Find the local moments of inertia of the upper arm of the Air Force mean man.

" From table V:
n = 0.436

From equations A-14, A-27, A-34, and A-28, or figure 13:

p =0.67445 A
B = 0.08006 c

0.08349
0.27016

Equations A-29, A-33, and A-38 become:

I, =1, = m[0.08349 (3’%)+ 0.2716 :ﬁ]
I =1, = mE).08349 (-‘E) + 0.08006 zﬁ]
ce 621

ce

2
Iy =1y, =o.16698-6!’“T

Also, from table V:

6 = 70,0 lbs/ft*®
4 = 13.0 in.
m = 5.10 lbs

then the moments of inertia about the mass center are found to be:

_ _ 5.10 [0.08349 x 5.10 (30
e = Lige = 322 | + 0.08006 |75 o)]

13.0
00" 135

= 0. 0157 slug-ft?

0.16698 ( 2213

lvee = (70 0) 13, 0)
32.3)\iz.0

0.00178 slug-ft?
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Symbols

X,
Xl

EQUATIONS OF MOTION FOR THE

THRUST MISALIGNMENT PROBLEM

APPENDIX B

Y, Z Body axis system coordinates (coinciding with the principal axes)
, Y', Z' Fixed or inertial axis system
f, f, k Unit vectors corresponding to the body axis system

i " f', k’ Unit vectors correspending to the inertial axis system
I

x, Iv, I, Principal mass moments of inertia

Conditions

and:

The following conditions are assumed for solution of the equations of motion for the thrust
misalignment problem:

Rigid body
Constant mass, m

PRETP

Ix = Iv

Using a vector notation:
Force vector
Position vector

Moment vector

But:

Therefore:

z > m> D-g],
H i "

L[}

M = Mx{‘*’ Mvi + le{

Constant moment about the body Y-axis
Constant thrust, F, in the direction of the body X-axis

~
e}
-y

my
*x =

F
X

€k Ff=eF§

(B-1)
(B-2)
(B-3)
(B-4)

(B-5)

(B-6)
(B-7)
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Then Euler's Equations:

=
I

= de’)(‘i' iz~ IV) Wy Wz
My = Iy (:)y + (Ix -Iz)wx w;
Mz=Izd)z+(Iv-Ix) Wy Wy

become:
} 0=Ix(;)x+(lz‘lx)wvw2

€eF=Iywv+ (Ix-1;) wyxw:
0=Iw:
From equation B-13:
I, w, = constant
If the body is initially at rest:

wy = 0
‘and the constant is zero. Equations B-11 and B-12 become:

0=Ix¢bx

€F
By the same reasoning applied to equation B-13, equation B-16 yields:

Iy wy

Wy = 0
Also equation B-17 yields:

for zero initial conditions.

Now: N R a a
w = Oin + wvj + wzk
d 9

but by equations B-15, B~18, and B-19:

€

~ €F -
=wv]=—I—v— tj

When the products of inertia are zero, angular momentum about the mass center of a
rotating body is given by:
He = Liwyxi+ Iywy] + L k
Substituting equations B-15 and B-18 into equation B-22:
ﬁ; = Iy wy f = hyf

Hence:
hx = hz = 0

40

(B-8)
(B-9)
(B-10)

(B-11)

" (B-12)

(B-13)

(B-14)

(B-15)

(B-16)

(B-17)

(B-18)

(B-19)

(B-20)

(B-21)

(B-22)

(B-23)

(B-24)
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Now the moment about the mass center is given by:
M, = Hc + & X H, (B-25)
After substituting and carrying out the indicated operations:

¢Fj ﬁyi+ w,,]?)(hv]? (B-26)

i}

= hyj ' (B-27)

Therefore, this moment increases the magnitude of the angular momentum, but does not
change its direction. Hence, the angular momentum and angular velocity vectors remain parallel
and fixed (in direction) in space. The only rotation is, then, a spin about the body Y-axis which
also remains fixed {in direction) in space. The thrust is then applied in a plane perpendicular to
the Y-axis and the resulting translation is in the same plane. K the body axis system is initially
aligned with the inertial axis system, then the body XZ-plane will remain in the inertial XZ-plane.
The only motion between the two axis systems is translation in the inertial XZ-plane and rotation
about the body Y-axis. The unit vector transformation becomes:

-

i=1i'cosp-k sinB : (B-28)

~

i=i ' (B-29)

where B is the angle between the Z- and Z-axes (or rotation between the two axis systems).

By Newton's Equation:

F=mi _ . . (B-30)
Fi=m(@a’/i’+a’j’+ a/ k') (B-31)
but: . . .
Fi =i’ FcosB - j'Fsin§B (B-32)
or: .
f’FcosB-f'FsinB =mayi’+ may/j’ + mayk’ (B-33)
therefore: -
FcosB = may" (B-34)
0 =may/ (B-35)
-Fsinf =ma, (B-36)
and:
=5 cosp (B-37)
Y= 0. (B-38)
2’ = -4 sinp (B-39)

Now the angular velocity of the body-fixed axis system with respect to the inertial system is:

w = Bj’ ' (B-40)
and from equation B-21:
T B = Bj (B-41)
Therefore:
«  €eFt
B = 1, (B-42)
and integrating:
€Ft? 2
B = ZIV = Kt (B-43)
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forl§=0att=0, and:
K = _251% (B_44)

Substituting for B8 in equations B-37 and B-39 and integrating, the coordinates of the trajectory
become:

v _ f 2 ’
X' =2 [[coskt®adtdt (B-45)
Y' =0 (B-46)
z'= -£ [sin Kt?atat (B-47)
m
Equations B-45 and B-47 can be nondimensionalized by substituting:
7° = Kt® (B-48)
,_mK _,
X, = ¥ X (B-49)
+ mK _,
Zy = Z (B-50)
Then:
X, = [[cosT?drdrT (B-51)
Z5 = -[[sint?drdr (B-52)
Note also:
dX,/dr = X = [cos7t®drT (B-53)
dZ,/dr = Zn = -[sin7® dr (B-54)
Solution

Equations B-51, B-52, B-53, and B-54 could not be integrated to get a closed form solution.
However, a numerical solution was achieved by applying the Runge-Kutta Method (ref. 16) and
computing the functions point by point on the AFIT IBM 1620 Digital Computer. The following

Fortran input program was used where:

Xn
Zy
Interval between points
X an'/ dr
Z dZ,/dr
and the "IN" after the above symbols refers to initial conditions. The results are given graphically
in figures 14 and 15. :

Wom NXA
mow
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ACCEPT, H, TIN, XIN, XPIN, ZIN, ZPIN

T = TIN
X = XIN

Z = ZIN

XP = XPIN

P = ZPIN

1 PRINT, T, X, XP, Z, ZP

F1l = H * COS(T*T)

F2 = H* CAS((T + .5 * H)** 2)
F3 = F2

Fh = H * CAS((T + H)** 2)

DELX = H * (XP + (F1 + F2 + F3)/6,)
DELXP = (F1 + 2,%(F2 + F3) + Flh)/6,
X = X + DELX

XP = XP + DELXP

Fl = — H * SIN(T*T)

F2 = =H * SIN((T + S5*H)**2)

F3 = F2
Fh = =H * SIN((T + H)**2)

DELZ = H * (ZP + (F1 + F2 + F3)/6,)
DELZP = (F1 + 2,%(F2 + F3) + FL)/6,
Z =27 + DELZ
P = IP + DELZP
TeT <+ H
Go Té 1
END
The solution is then:
X = NX' (B-55)
Z=NZz’ (B-56)
X = Nk R (B-57)
7 = NJK 2 (B-58)
B =kt (B-59)
B = 2kt (B-60)
where: N - &
€em (B-61)
Example

The USAF mean man is equipped with a thrust device rigidly attached to his back so that its
thrust vector passes through his center of mass when he is in position A (figure 5). However,
just before firing the device (capable of generating 10 pounds of thrust), he changes to position
B. What is the resulting motion, assuming the conditions previously listed apply ?

From equation 24 and the tabular data intables V, VI, and VII:
n
'Z: mi(Zi -Zio)

i=1
Myt

Z =

= {201.16(14.672 + 7.406)] + 2[3.03(8.138 - 0.114)]
+ 2[16.33(1.355 + 11.406)] + 2[8.05(2.181 + 27.286)]
+ 2[2.39(-8.256 + 37.716)]} + 162.22 =6.97Tin. = ¢
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Figure 14. Nondimensional Velocity Components As a Function of T
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Figure 15. Nondimensional Trajectory As a Function of T




AMRL-TDR-63-18

For the USAF mean man:

m = 5,0379 slugs
Iy = 2.9445 slug-ft*®
Then equation B-44 yields:
6.977.
—3 X 10

K = X 9.9445 - 0.9873/sec?

and from equation B-61:

2 X 2.9445
N = 5977 = 2.0105/ft
1z X 5.0379
Equation B-48 yields:
7 = 0,994t

and equations B-55 through B-60 become:

X = 2.01X’ X = 2.00%’
Z = 2.01A’ Z = 2.00Z’
B = 0.987¢ B = 1.975

The values of these functions are given for various times in table X.

TABLE X

NUMERICAL RESULTS OF THE MISALIGNED THRUST PROBLEM

t X X Z Z 8 B
(seconds) (feet) (ft/sec) (feet) (ft/sec) (degrees) (rpm)
1.008 0.160 1.900 -0.162 ~-0.649 57.5 19.2
2.016 2.620 0.924 -1.572 -1.610 230.0 38.3
3.022 3.830 1.411 -2.740 ~1.553 516.0 57.5
5.030 6.280 1.223 -5.300 -1.056 1430.9 95.9
10. 060 12.590 1.202 -11.590 -1.167 5720.0 191.4
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APPENDIX C

FREE-BODY DYNAMICS PROBLEM

Symbols

&, €, € Unit vectors corresponding to the X, Y, Z Body-Fixed Axis System at the
mass center of mass, mo

E,, ., Es  Unit vectors corresponding to the X’, Y’, Z’ Body-Fixed.Axis System at
A the mass center of mass, m,

Q., Q: Position vectors from the hinge point to the individual mass centers
w Angular velocity of mass, m

Q Angular velocity of mass, m,

A Net angular velocity of the system

He Total angular momentum of the system about the mass center

h, Angular momentum of mass, m,

h- Angular momentum of mass, mg

I, Moment of inertia of mass, m,, about its mass center

I, Moment of inertia of mass, m., about its mass center

Deviation of Equations

The system of two rigid masses shown in figure 16 is hinged at point G so that the mass
centers and point G remain in the same plane. Assume that initially:

y=20 (C-1)
.Y = constant = A (C-2)
'Hc = 0 (C"3)
and there are no external forces. From figure 16 it can be seen that:
Q1 = Q1I§1 (C‘4)
Q> = -Qz€; = -Q:cosYE,- QesinyE, (C-5)
a-‘ = wés = @ E3 (C‘G)
Q = -aEa‘ (C‘7)
Y& =X = X E, (C-8)
h1 = -Il QEs (C-Q)
h = Iz w éa = Iz(l" Q) éa (C-IO)
Since c.c.m. is the mass center of the whole system:
m;D, + mzD; =0 {C-11)
or:
b =-Mup - Ly (C-12)
2 ms 1 T -

where ¥ is the mass ratio, 2.,
m,
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@ MASS CENTER OF EACH MASS (c¢m.)

MASS CENTER OF THE TOTAL SYSTEM (c.c.m.)

MASS m2

MASS m,

Figure 16. Vector Diagram and Body-Fixed Axis Systenms

Now define:

~

ﬁl + 8 = D2
Solving equations C-12 and C-13 simultaneously:

D, = -A(l+ %) ¥

Al + W)

b.

The total momentum of the system can be written (ref. 10):

~

Hc=ﬁ1+m161X]51+ﬁg+ mgf)gx152

and by equation C-3: . . s . R s
0=h1+ m1D1 XD1 + hz + szzyDg

Substituting equations C-9, C-10, C-14, and C-15 into equation C-17, then:

-1, 0 Es + m,[A(1+¥)"*0] XTAQ+ ¥)*¥] + L(A-Q) Es

s mafA+ W NIX[AG@+ W) =0

48
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where: . .

D, = -A(1+ ¥)'y (C-19)
Do = A1+ ¥) ‘C-20)
Now: " o
A = D:-D, (c-21)
= -(Q: + Qzcos¥) E, + (-Q, siny) E. (C-22)
and: 2 s N R
A =A L QXA (C-23)

Equation C-23becomes after simplification:
A=(2-0)QosinyE, + [Q: 0 + Q2 (@ -Ncosy] BEo  (C-24)

Substituting equation C-24 into C-18 and carrying out the indicated operations, equation C-18
becomes:

[y + 1) € -IA1 Es =(m; ¥° + m,)(1 + )2 |
[-Q2 + Q% +2Q, Q= cosY) 0 + Q2+ Q, Q= cosy ) Al E, (C-25.)
Equating the scalar components and combining, equation C-25 reduces to:
[L+ I+ @QF + Q8+ 2Q,Qz2co8%) mo (1 + ¥)*1 Q
=[I: +Q2Q: +Q, cos¥)mz(1+ Y=2]x (C-26)

or:
LG =1 () A (C-27)

where I,(t) and I=(t) are instantaneous moments of inertia and:

L) =L+ L+ QP+ QF+ 2Q1Qzcosy)m,(1+ 9™ (C-29)

Ig(t) = Iz+ Qz(Qg + Q1 Cosy)mg(l + ‘I’).-l (C-29)
Let: dv

L) = at = v (C-30)
then:

v = i—j%—; A dt (C-31)

Now:

Y =it (C-32)
or:

dy = 2dt (C-33)

Substituting equation C-33 in equation C-31 and integrating:

14 Y
Idv - i—;% dy (C-34)

(o]
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Equations C-28 and C-29 can be written:

I,(t) = C + Dcosy {C-35)
I.(t) = A + Bcosy iC-36)

where:
A = I + ng mg(l + \I/)—l {C-37)
B =Q,Q.mz(1+ ¥&)? {C-38)
C=IL+L+Q%f+Q%m=(1+ ¥)* {C-39)
D = 2Q 1Q2 mg(l -+ \I)—l (C-40)

- and are constant for a given problem. Equation C-34 then becomes:

C + Dcosy
o]

Y
b = jﬂm dy (C-41)

Integrating the right side of equation C-41:

y -C 5_.D? :
v= < (—ZA——l:.,arctan vCZ-D tan l) (C-42)
2 Cc® -D* C+D 2
Y
v = Z B_ Iatan 2
=3 +71 arctan 1, (0) (C-43)

where:

Io =+/C2 -D? =[(; +1.)? + 2mo(I, + I2)(Q,% + Q2)(1+ ¥)*

+ mAQ7 - Q7)1 + 9212 (C-44)

I, =2A-C=1; -1, + m2{1+¥)"Q° - Q7) (C-45)
L(0=C+D=1,{t)zt ¢ =0 ~ {C-48)
=1, + 1 +(Q2+ Q%) ma(1+¥)™* + 2Q,Q-mo(1+ ¥)? (C-47)

Hence, the change in the attitude of the large mass, m,, is a function of the rotation, ¥, of the
small mass, ms.

Example

If the small mass, m», represents both arms (including the hands) of the USAF mean man,
and m, represents the total mass less that of m», equation C-43 can be used to calculate the
change in body attitude when the arms are rotated. Then, from the tabular data in tables V, VI,
and VII, and the above equations:

Q. = 1.511ft - I, = 8.6811 slug-ft?
Q= = 0.988 ft I, =10.4866 slug-ft>
v = 0.1294 I, =-9.0980 slug-ft?
I. = 0.2508 slug-ft? 1(0) =12.1223 slug-ft >
and:
= % - 0. 8676 arctan (0. 86507 tan _g)
for y = 360°:
= 180° - 0. 8676 (180°)
= 23.84°
50




